
Extreme Programming Verification using Unified
Process

1G. Sivanageswara Rao 2Ch.V.Phani Krishna 3Dr. K.Rajasekhar Rao

 1,2 Associate Professor, 3Dean S&F welfare
 1,2,3KL University

Abstract--The movement has received much attention in
software engineering. Established methodologies try to surf on
the wave and present their methodologies as being agile, among
those Rational Unified Process (RUP). In order to evaluate the
statements we evaluate the RUP against Extreme Programming
(XP) to find out to what extent they are similar end where they
are different. We use a qualitative approach, utilizing a
framework for comparison. We conclude from the analysis that
the origin and business concepts of the two – commercial for
RUP and freeware for XP – is a main source of the differences.
RUP is a top-down solution and XP is a bottom-up approach.
Which of the two is really best in different situations has to be
investigated in new empirical studies

I. INTRODUCTION
The agile movement has appeared the last years as an
alternative direction for software engineering [1]. Among the
agile methodologies, Extreme Programming (XP) is the most
well known [2]. In the current agile boom, many established
software engineering methodologies try to present themselves
as being agile. The Rational Unified Processes (RUP) [16] is
among those, providing “plugins” to RUP for eXtreme
Programming1. Thereby they offer a downsized version of
RUP, which is stated to be lightweight, agile style. Both
methodologies share some common characteristics; they are
iterative, customer-oriented and role-based. RUP is generally
not considered agile; rather it is criticized for being too
extensive and heavyweight [21]. RUP comprises 80 artifacts
while XP only stresses the code. RUP has 40 roles while XP
has five.
Using a modified version of a standard question framework,
we investigate similarities and differences between RUP and
XP. The paper is outlined as RUP and XP briefly, as well as
the research methodology.

II. RELATED WORK

Rational Unified Process
Rational Unified Process (RUP) is a development
methodology, developed and marketed by Rational Software,
by now owned by IBM. The first release came in 1998 and
was a result of cooperation between Grady Booch, James
Rumbaugh and Ivar Jacobson [12]. RUP is a general
methodology that needs tailoring to specific organizations’
and projects’ needs.

The core values of RUP are [16]
 Use case driven design
 Process tailoring
 Tool support

The process is use case driven, and the use cases constitute
the basis for other elements in the development process. The
practical work in RUP consists of the following main items:

 Develop software iteratively
 Manage requirements
 Use a component-based architecture
 Model the software visually
 Verify the software quality continuously
 Manage software change

The RUP methodology is presented using four primary
modeling elements:

 Roles – who is doing what
 Artifacts – what is produced
 Activities – how the work is conducted
 Workflows – when a task is conducted

To manage a software project, some kind of a project
management model is needed, mostly of a stage-gate type [5].
This is integrated into RUP.

III. RELATED APPROACH FOR EXTREME

PROGRAMMING(XP)
Extreme Programming (XP) is a lightweight development
methodology, which stresses teamwork, communication,
feedback, simplicity and problem solving [2]. XP consists of
a set of software development practices, packaged into
wholeness by Kent Beck and Ward Cunningham. Its roots are
in the object-oriented community, specifically among
SmallTalk programmers. XP is built on four values:

 Communication
 Feedback
 Simplicity
 Courage

Through communication within and outside the project, it is
ensured that the right product is developed. Quick and
frequent feedback provides abilities to correct the direction of
the project. Simplicity means building the right product, not a
product for possible future needs. Courage is needed to
maintain openness and communication.

G. Sivanageswara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 73 - 76

www.ijcsit.com 73

Fig1: Dependencies on Practices

XP has four basic activities, coding, testing, listening and
designing, which are conducted by five major roles,
programmer, customer, tester, tracker, and coach. Iteration is
a key concept in XP. The time constant in the different
iterations range from seconds to months, see Figure 1. The
major reason for this was that most of the projects studied
were small parts of larger projects. Therefore, they could not
implement all the practices of XP; they did what they could
in their own situation. It was not clear from the study which
other XP practices they would have implemented if they had
had the chance. However, since a large part what we wanted
to learn was which practices work in our culture, we were
interested in the empirical rather than the hypothetical,
anyway. Because of the position in the schedule, as well as
the fact that they were in larger projects, it was impossible to
collect reliable quality and productivity metrics. However, it
appeared that their productivity compared favorably to
standard development methodologies in the company. It was
significant to note that every person interviewed was
enthusiastic about the methodology. All intended to continue
their practices, and expand them where possible. The list
describes the Extreme Programming Practices
Small Releases – All projects used small releases in some
form. The size of the development intervals was from two to
four weeks. Where the XP development was part of a larger
project, the development intervals culminated in deliveries
into the official code base of the project. One team
punctuated each interval with a demo to themselves and
others on the project. They reported that this was a strong
morale booster on the team. One project’s data showed that
they had not made substantial improvement in the accuracy
of their development estimates over several iterations. They
admitted, however, that they had not re-estimated after each
iteration, but plan to do so in the future.
Metaphor – No project had a metaphor. This is consistent
with reports from Kent Beck , who stated that people tell him

that they do XP, “..except metaphor, of course.”[18]. Others
have also noted that people have difficulty understanding
Metaphor [19]. This is certainly one major reason that no
project used metaphor. The other major reason is that XP’s
Metaphor intends to fill some of the purpose of traditional
software architecture, namely creating a shared vision of the
system to be built. Every project in the study did produce an
architecture. This was no doubt partly due to the influence of
existing practices, but no project even considered creating a
metaphor rather than an architecture. Nobody was interested
in metaphor.
Simple design – Projects did not highlight simple design as
an important part of their XP process. This should not be
construed to imply that they did not have simple designs, but
rather that it was not an important difference from their
traditional processes.
Testing – All projects intended to require that tests be
submitted along with code, creating a body of automated
regression tests. One project followed this rigorously. Other
projects followed it partially. The major reason for this was
schedule pressure with focus on delivered functionality. A
related reason was the time and effort were not available to
set up an automated regression testing system, particularly
where the XP project was part of a larger project. All
projects were for software to be sold to multiple customers,
so it was not realistic to have a customer write and execute
acceptance tests. However, every project did have an
extensive system verification program. In this model, the
system testers functioned as “surrogate customers”, writing
and executing acceptance tests.
Refactoring – Refactoring did not figure prominently in the
projects. The only project to refactor frequently was a
forward looking work project with three people on the team.
The other projects indicated that they were not opposed to
refactoring, but there really hadn’t been a need to do so. This
may be a reflection of more up-front design than is typically
done in an XP project.
Pair programming – All projects did some form of pair
programming, but each did it a little differently. No project
required it for every line of code; in fact in every project, pair
programming was voluntary. In one project, developers
began by doing all programming as pairs, but found it was
too inefficient. So they programmed the simple code
individually, but paired up on the difficult code. Another
project had two developers, located 2000 miles apart. They
tended to write code individually, but debugged their code
together, using a shared desktop. One developer pointed out
that this was actually more convenient, because they weren’t
crowded against each other. Code inspections are standard
practice in Avaya. In one instance, pair programming was
allowed to replace code inspections. The project did not have
data to indicate whether one was more effective than the
other in finding errors.
Collective ownership – Code ownership practices varied
from project to project, due in part to constraints of the
surrounding projects. Where collective ownership was
practiced, there was a practice of de facto code ownership:

G. Sivanageswara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 73 - 76

www.ijcsit.com 74

people gained natural expertise in certain parts of the system,
and made the bulk of changes there. One project codified this
practice into a “lightweight ownership” policy: one could
change any of the code, but needed to check with the owner
of the code for advice.
Continuous integration – In most cases, projects worked
within the larger project methodology of integration. This
was generally weekly integrations into the main software
base, although the XP sub-projects were able to integrate
more often. In one standalone case, the team members
integrated continuously.
On-site customer – No project had an on-site customer. As
stated above, this model is not practical where one has many
customers or potential customers. In addition, it is usually not
desirable; the project gets only a single view among many
customers. Projects continued to use a surrogate customer
model, where an aggregate view of customer needs is created.
Coding standards – Avaya has had a tradition of coding
standards. The XP projects followed their pre-existing coding
standards.

IV. ANALYSIS OF RATIONAL UNIFIED PROCESS

We begin with the history of the methodologies, and then
move towards the underlying philosophies and the project
types, for which the methodologies are suitable. RUP is
created by the well-known triple, Jacobson- Booch-
Rumbaugh, launched in its first version 1998. Jacobson began
the development of the use-case based approach at Ericsson
in the 1980’s. RUP has evolved in conjunction with the
Unified Modeling Language (UML) [8]. RUP is based on the
originators’ and others practical experience from software
engineering, and has evolved further during the years, as well
as the UML language. RUP is designed for large product
development projects. Even though books are published on
the methodology, the main distribution channel is though
purchasing of licenses for the tool support for the RUP
methodology, offered by Rational Software, which now is
owned by IBM. XP has its origins in practical applications in
projects during the 1990’s. Beck and Cunningham have
packaged their experiences into XP, originally from a project
at Chrysler. It is a lightweight method for small to medium
sized software development teams. XP is intended to meet the
demands of a context with unclear and volatile requirements.
There is nothing commercial in the methodology; instead
there is a set of people – a community – who evolve and
develop tool support (freeware and shareware) to support XP
development projects. The origin of RUP and XP are similar.
They are both based on experience from software
engineering. Both are evolved during the same decade,
although RUP has its roots earlier. There are two different
underlying philosophies behind RUP and XP. RUP takes to a
large extent a technical management perspective while XP
focuses on the development staff. RUP is designed to support
large projects, while XP is originally designed for small to
medium sized projects, for which type of projects several
experience reports are published, see e.g. [9][13][19]. The
distribution of the methodologies is different; RUP is

commercial and XP is freeware. On the technical side, RUP
provides the organization a large package of development
tools and documents. It is delivered online via the web, and
updated in new releases. It can be tailored and extended to
suit the individual organization’s needs. One major sales
argument for RUP is the integrated tool-suite. XP on the
other hand strives towards simplicity. It is not connected to
specific tools but lets the user choose which tools to use.
Tools are developed in the XP community, which support
specific practices, e.g. Junit for the testing practice. RUP is a
large collection of processes, artifacts and roles. This must be
scaled down for most projects except for the very largest
ones. XP starts in the other direction, with a minimal core of
values and practices, which has to be scaled up to fit larger
contexts. The financial issues are different in the distribution
and support of the methodologies, since RUP is a commercial
product and XP is freeware. The financial power behind RUP
is used for marketing giving more visibility to RUP. Rational
Software is owned by IBM, which has good reputation in the
software industry. RUP provides continuous updates, which
enables the users being up to date regarding development
methodologies. On the other hand, why should one pay for
something that can be achieved for free? Effort must be spent
on tailoring RUP, why should an organization then pay for it
as well? [10] XP offers the freeware solution, which is
financially advantageous, but may cause social reactions. The
social aspects of RUP and XP are also related to the
commercial versus freeware discussion. Larger software
development companies are used to buying software licenses,
and hence buying licenses for methodology is quite natural.
The freeware principle behind XP is met with skepticism.
Can something that is for free be good? The situation is very
much like the open source situation. Free software is offered
from the open source community and software is licensed
from commercial companies, e.g. the Linux operating system
versus Microsoft Windows. The choice is of course primarily
technical and financial, but there is a significant social aspect.
Smaller organizations and technical staff show a tendency to
be more in favor of the freeware/open source approach, while
large organization and management are in favor of the license
approach. The good reputation and financial strength behind
RUP are management arguments, while on the technical
level, people know that both approaches need tailoring and
hard work – hence they choose the method which is cheapest,
least complex, and puts the technical work in focus. The
RUP process as such is guided by a tool, and there are
suitable tools for e.g. modeling that interface smoothly with
the methodology. As the methodology is so extensive, this is
absolutely necessary, to guide the user. This is also a part of
the commercial success of RUP. XP does not proclaim any
specific tools. There are tools offered by the community, e.g.
Junit, but any kind of CASE tools and project management
tools can be used in XP. However, it is worth noticing, that in
its original form, whiteboards, paper cards and pens are the
most mentioned tools in XP. What characterizes the
developers and organizations using RUP and XP
respectively? XP focuses on the individual developer,

G. Sivanageswara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 73 - 76

www.ijcsit.com 75

empowering the technical level in the organization. It is based
on direct communication between stakeholders, and requires
courage, as openness and honesty are important. This requires
the staff and organizations acknowledge and maintain these
kinds of characteristics and values. It requires team workers
solving problems in teams, and not feeling discomfort for
peer reviews. RUP does not focus on the individual
developer, but emphasizes the roles, which are tailored to
specific projects. It prescribes documentation, which puts
demands on the staff to be motivated to spend effort on
preparing and maintaining the artifacts. The origin of the
methods are different, RUP originates from large projects and
organizations, and XP from the small. This fact permeates the
methodologies as such, as well as its advocates and critics.
RUP is a top-down methodology, advocated by management
while XP is a bottom-up methodology, advocated by the
technical staff.

V. CONCLUSIONS

In this paper, we have found the similarities and differences
between Rational Unified Process and Extreme Programming
methodologies. Although many keywords and key values are
the same, the two methodologies are quite different. Common
values are user involvement, iterations, continuous testing
and flexibility. The implementation of these values are
however very different. Rational Unified Process offers an
extensive process description, comprising arte-facts, roles,
activities, integrated tool-suites etc. XP on the contrary
stresses values and principles, rather than prescriptive
instructions, and focuses freedom and simplicity. The
distribution channels are different, Rational Unified Process
being a commercial product by a large company, and XP is
freeware, maintained by a community of volunteers. We
conclude from this analysis that the two in many aspects are
in contrast. The situation is very similar to the Windows vs.
Linux case. One is commercial, the other is freeware. One
tends to be advocated by managers, the other by engineers.
Still both are operating systems for personal computers. It is
important to be aware of this social aspect in the selection of
RUP. Which of the two is best suited for certain types of
projects needs to be further investigated in empirical studies.

REFERENCES
[1] K. Beck, Extreme Programming Explained, Reading, MA: Addison-

Wesley, 2000.
[2] M. Beedle, et al., “SCRUM: A Pattern Language for Hyperproductive

Software Development,” in Pattern Languages of Program Design 4, N.
B. Harrison, B. Foote, and H. Rohnert, eds., Reading, MA: Addison-
Wesley, 2000, pp.637-652.

[3] J. O. Coplien, “A Generative Development-Process Pattern Language,” in
Pattern Languages of Program Design, J. O. Coplien and D. Schmidt
eds., Reading MA: Addison-Wesley, 1995, pp. 183-238.

[4] W. Cunningham, “EPISODES: A Pattern Language of Competitive
Development,” in Pattern Languages of Program Design 2, J. M.
Vlissides, J. O. Coplien, and N. L. Kerth, eds., Reading, MA: Addison-
Wesley, Reading MA 1996, pp. 371-388.

[5] K. Beck and M. Fowler, Planning Extreme Programming, Reading, MA:
Addison-Wesley, 2000.

[6] R. Jeffries, Extreme Programming Installed, Reading, MA: Addison-
Wesley, 2000.

[7] J. W. Newkirk and R. C. Martin, Extreme Programming in Practice,
Reading, MA: Addison-Wesley, 2001.

[8] K. Beck et al, “The Agile Alliance Manifesto,” available
http://www.agilemanifesto.org/principles.html.

[9] A. Cockburn, Agile Software Development, Reading, MA: Addison-
Wesley, 2002.

[10] M. Fowler and J. Highsmith, “The Agile Manifesto,” Software
Development, vol.9, no. 8, pp. 28-32, Aug. 2001.

[11] IBM (Smith, J.), A Comparison of the IBM Rational Unified Process
and eXtreme Programming,
http://www3.software.ibm.com/ibmdl/pub/software/raional/web/whitep
apers/2003/TP167.pdf

[12] Jacobson, I., Booch G. and Rumbaugh, J, The Unified Software
Development Process, Addison-Wesley,1999.

[13] Karlström, D., “Introducing Extreme Programming - An Experience
Report”, Proceedings Third International Conference on eXtreme
Programming and Agile Processes in Software Engineering, 2002.

[14] Karlström, D. and Runeson, P., “Integrating Agile Software
Development into Stage-Gate Managed Product Development”,
technical report CODEN : LUTEDX (TETS-7203) / 1-34 / (2004) &
local 16, 2004.

[15] Kitchenham, B., Linkman, S., and Linkman, S., “Evaluating Novel
Software Engineering Tools”, Proceedings The 7th International
Conference on Empirical Assessment in Software Engineering (EASE
2003), Keele University, Staffordshire, UK, pp. 233-247, 2003.

[16] Kruchten, P., The Rational Unified Process – An Introduction, Addison-
Wesley 2nd edition, 2000.

[17] Lindland O. I., Sindre, G. and Sølvberg, A., “Understanding in
Conceptual Modeling”, IEEE Software, March, pp. 42-48, 1994.

[18] Robson, C., Real World Research, Blackwell Publishers, Oxford, 2nd
edition, 2002

[19] Schuh, P., “Recovery, Redemption, and Extreme Programming”, IEEE
Software December, pp. 34-41,2001.

[20] Scott, K., The Unified Process Explained, Pearson Education, 2001.

G. Sivanageswara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 73 - 76

www.ijcsit.com 76

